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Abstract

Individuals have different capability of transforming resources into
basic human functionings. Our priority principles roughly say that the
more disabled a person is, the greater access to resources she should
be provided. Extending Moreno-Ternero and Roemer (2006, “Impar-
tiality, priority and solidarity in the theory of justice,” Econometrica
74, 1419-1427) and Chun, Jang, Ju (2014, “Priority, Solidarity, and
Egalitarianism,” Social Choice and Welfare, 43, 577-589) to multidi-
mensional setting, we provide characterization of egalitarian alloca-
tion rules using our priority axioms and other standard axioms in the
literature of fair allocation. Our egalitarian allocation rules choose al-
locations where all persons achieve the same level of capability index
(the index function aggregate resources and basic human functionings
into a real number representing the level of capability). Among these
rules are resource and output egalitarian rules. The output egalitarian
rule adopting the human development index is a central example in
the family. Keywords: priority, egalitarianism, capability approach,
solidarity
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2 Model

Consider a society with a finite number of sectors and a finite number of

agents. The society allocates resources to the agents and individual outputs

are interpersonally comparable. Each individual, after receiving resource

from the society, decides how much to assign into multiple sectors, and then

produces multiple-dimensional outputs. Assume that the same kind of out-

puts are interpersonally comparable, but outputs of different kinds are not

comparable.

Let N = {1, 2, · · · , n} (n ≥ 3) be a set of agents, M = {1, 2, · · · ,m}

(m ≥ 2) be the set of sectors, and W ∈ R+ be the total available resource.

Each agent i ∈ N is characterized by a profile of division functions γi =

(γ1i, · · · , γmi) and output functions yi = (y1i, · · · , ymi), where γi : R+ → Rm
+

is assumed to satisfy

(i) (efficiency) γi(Wi) > 01 for any Wi > 0 and
∑

t∈M γti(Wi) = Wi,

(ii) (sector monotonicity) γi(Wi) > γi(Ŵi) for any Wi > Ŵi,
2

(iii) (sector unboundedness) γti(Wi)→∞ as Wi →∞ for each t.3

and yti : R+ → R+ is assumed to be continuous, strictly increasing, un-

bounded, and yti(0) = 0 for each t ∈ M . Let Γ be the set of all such divi-

sion functions and Y∗ be the set of all such output functions. An economy

e = (γ, y,W ) consists of a profile of agents’ division functions γ ≡ (γi) ∈ Γn,

1For any vectors x = (x1, · · · , xn) and x′ = (x′1, · · · , x′n), we denote x′ > x if x′k > xk
for all k = 1, · · · , n, and x′ ≥ x if x′k ≥ xk for all k = 1, · · · , n.

2If an individual gets more resource from the society, she assigns more resource into
both sectors.

3Each individual’s decision plan for both sectors are unbounded.
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a profile of agents’ output functions y ≡ (y1i, · · · , ymi)i∈N ∈ (Y∗)mn, and the

available resource W ∈ R+. Let E∗ ≡ Γn × (Y∗)mn × R+ be the set of all

economies, the universal domain. Domain E is a covering domain so that

the graphs of division functions in Γ and output functions in Ym cover the

positive quadrant, that is, for all (w1, · · · , wm) ∈ Rm
++ and a, b ∈ R++, there

is γi ∈ Γ and yti ∈ Y such that γ(a) = (w1, · · · , wm) and yti(a) = b. (We

suppress ∗ in E∗ and Y∗ when there is no confusion.)

An allocation rule F : E → Rmn
+ associates with each economy e =

(γ, y,W ) ∈ E an allocation of individual resources for producing outputs

in each sector, F (e) = (Fi(e)){i∈N} = ((Fti(e)){t∈M}){i∈N} ∈ Rmn
+ satisfying

the resource constraint :∑
t∈M,i∈N

Fti(e) = W and γi

(∑
t∈M

Fti(e)
)

= Fi(e) ∀i ∈ N,

division function invariance: for each i ∈ N ,

Fi(e) = Fi(γ
′, y,W ) if γi

(∑
t∈M

Fti(e)
)

= γ′i

(∑
t∈M

Fti(e)
)
,

and sector unboundedness : for each i ∈ N and t ∈M ,

lim
W→∞

Fti(γ, y,W )→∞.

We denote Si(e) =
∑

t∈M Fti(e) and yi(Fi(e)) = (y1i(F1i(e)), · · · , ymi(Fmi(e)))

for notational convenience. Each kind of output is produced by the same kind

of resources. For example, y1i(F1i(e)) is agent i’s first output with her share

of the first resources. According to the resource constraint, we can consider

that each individual, after receiving its individual resource, has its own divi-

sion plan that the social rule cannot control so that the rule takes the division

function profile into consideration when determining the distribution.
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3 Axioms

3.1 Priority axioms

No-Domination. For all e = (γ, y,W ) ∈ E , there is no pair i, j ∈ N

such that (Fi(e), yi(Fi(e))) ≤ (Fj(e), yj(Fj(e))) and (Fti(e), yti(Fti(e))) <

(Ftj(e), yti(Ftj(e))) for some t ∈M .

For all i, j ∈ N, t ∈ M , and all yti, ytj ∈ Y , denote yti ≤ ytj if yi(x) ≤ yj(x)

for all x ∈ R+, and yti < ytj if yi(x) < yj(x) for all x ∈ R+. Moreover,

for all i, j ∈ N and all yi, yj ∈ Yn, we say yi is disabled relative to yj

if yi(w) ≤ yj(w) for all w ∈ Rm
+ to denote as yi(w) ≤ yj(w), and yi is

strictly disabled relative to yj if yi(w) < yj(w) for all w ∈ Rm
+ to denote

as yi(w) < yj(w).

Order-Preservation. For all e = (γ, y,W ) ∈ E and all i, j ∈ N , if yi ≤ yj,

then Fi(e) ≥ Fj(e).

No-Reversal (in Outputs). For all e = (γ, y,W ) ∈ E and all i, j ∈ N , if

yi ≤ yj, then yi(Fi(e)) ≤ yj(Fj(e)).

Note that each of the three axioms implies equal treatment of equals ; for all

e = (γ, y,W ) ∈ E , if (γi, yi) = (γj, yj), then Fi(e) = Fj(e). Note also that

no-domination implies order-preservation and no-reversal.

Disability Monotonicity. For all (γ, y,W ) ∈ E , all i ∈ N , and all yi, y
′
i ∈

Yn, if y′i ≤ yi, then Fi(γ, (y
′
i, y−i),W ) ≥ Fi(γ, y,W ).
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3.2 Solidarity Axioms

Agreement. For all e = (γ, y,W ), e = (γ′, y′,W ′) ∈ E , and all M ⊆ N ,

if (γM , yM) = (γ′M , y
′
M), then either FM(e) = FM(e′), FM(e) > FM(e′), or

FM(e) < FM(e′).

Separability. For all e = (γ, y,W ) ∈ E , e′ = (γ′, y′,W ′) ∈ E , and all M ⊂

N such that (γM , yM) = (γ′M , y
′
M), if

∑
i∈M(Si(e)) =

∑
i∈M(Si(e

′)), then

FM(e) = FM(e′).

Separability is implied by agreement. It says that when the sum of resources

remains unchanged for the unaffected agents, their allocation should be the

same as before.

Resource Monotonicity. Let e = (γ, y,W ), e′ = (γ, y,W ′) ∈ E be such

that W ′ > W . Then F (e′) > F (e).

Another implication of agreement is this axiom. When nothing but the

amount of resources changes by a positive or negative shock, all agents should

share its effect, that is, the amount of resources in each skill given to all agents

should move in the same direction. The following axiom is also induced by

agreement.

Resource Continuity. For all y ∈ Ymn, if a sequence of resources {W n}n∈N
converges to W , then {Fti(γ, y,W

n)}n∈N converges to Fti(γ, y,W ) for all

t ∈M, i ∈ N .
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Evidently, an implication of resource monotonicity is resource continuity,

that is, for all (γ, y) ∈ Γ × Yn, if a sequence of resources (W n : n ∈ N)

converges to W , then (F (γ, y,W n) : n ∈ N) converges to F (γ, y,W ).

4 Main Results

We first show that agreement is equivalent to the combination of separability

and resource monotonicity.

Proposition 1. A rule satisfies agreement if and only if it satisfies separa-

bility and resource monotonicity.

Proof. The proof is an adaptation of Proposition 1 in Chun, Jang, and Ju

(2014).

Proposition 2. If a rule satisfies no-reversal, disability monotonicity, and

agreement, then it satisfies no-domination.

Proof. Let F be a rule satisfying agreement, no-reversal, and disability mono-

tonicity.

Step 1. For all e = (γ, y,W ) ∈ E , i ∈ N , and y′i ≤ yi, Fi(γ, (y
′
i, y−i),W ) ≥

Fi(e) and FN\{i}(γ, (y
′
i, y−i),W ) ≤ FN\{i}(e).

Let any e = (γ, y,W ), e′ = (γ, (y′i, y−i),W ) ∈ E with y′i ≤ yi. By disability

monotonicity and sector monotonicity, Fi(e
′) ≥ Fi(e), which also indicates

that Si(e
′) ≥ Si(e). Therefore

∑
j∈N\{i} Sj(e

′) = W − Si(e
′) ≤ W − Si(e) =∑

j∈N\{i} Sj(e). Finally, by agreement, FN\{i}(e
′) ≤ FN\{i}(e).
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Step 2. F satisfies no-domination.

Suppose conversely that there exists e = (γ, y,W ) and i, j ∈ N such that

(Fi(e), yi(Fi(e))) ≤ (Fj(e), yj(Fj(e))) and (Fti(e), yti(Fti(e))) < (Ftj(e), yti(Ftj(e)))

for some t ∈M . Let y′i ∈ Yn such that y′si ≥ max{ysi, ysj} and y′si(Fsi(e)) ≤

ysj(Fsj(e)) for each s ∈ M , and y′ti(Fti(e)) < ytj(Ftj(e)). Notice that both

yi and yj are disabled relative to y′i. Let e′ = (γ, (y′i; y−i),W ). By Step

1, Fi(e
′) ≤ Fi(e) and Fj(e

′) ≥ Fj(e). Then y′si(Fsi(e
′)) ≤ y′si(Fsi(e)) ≤

ysj(Fsj(e)) ≤ ysj(Fsj(e
′)) for all s ∈ M and y′ti(Fti(e

′)) ≤ y′ti(Fti(e)) <

ytj(Ftj(e)) ≤ ytj(Ftj(e
′)). That is, y′si(Fsi(e

′)) ≤ ysj(Fsj(e
′)) with y′ti(Fti(e

′)) <

ytj(Ftj(e
′)), which contradicts no-reversal at e′.

4.1 Index-egalitarianism

We first define a family of rules that satisfy no-domination and agreement.

Let Φ be the class of all functions ϕ : R2m
++∪{(0, 0, · · · , 0)} → R+, continuous

on its domain and nondecreasing, satisfying ϕ(0, 0, · · · , 0) = 0 and the fol-

lowing monotonicity property: for all a = (at)t∈M , a
′ = (a′t)t∈M , b = (bt)t∈M ,

and b′ = (b′t)t∈M ∈ Rm
+ ,

• ϕ(a′, b′) ≥ ϕ(a, b) if (a′, b′) ≥ (a, b),

• ϕ(a′, b′) > ϕ(a, b) if (a′, b′) ≥ (a, b) with (a′t, b
′
t) > (at, bt) for some t.

Given an economy e = (γ, y,W ), for each i ∈ N , let ψi : Rm
+ → R+ be

such that for all a = (at)t∈M ∈ Rm
+ , ψi(a) = ϕ(a, (yti(at))t∈M). Since agents

have different output functions, each of them faces a different index function.

Notice that ψi is non-decreasing in each resources because output functions

are strictly increasing, and that ψi(γ1i(W ), · · · , γmi(W )) is strictly increasing
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in W . Also notice that the properties of ϕ imply continuity and the following

monotonicity for ψi for all i ∈ N : for a = (at)t∈M , a
′ = (a′t)t∈M ∈ Rm

+ ,

(i) ψi(a
′) ≥ ψi(a) if a′ ≥ a, and

(ii) ψi(a
′) > ψi(a) if a′ ≥ a with a′t > at for some t ∈M .

We now define the index-egalitarian rule (Moreno-Ternero and Roemer (2006))

that equalizes the ϕ-value for all the agents.

Index-Egalitarian Rule Eϕ: For all e ∈ E and all i ∈ N , Eϕ
i = ai =

(a1i, · · · , ami) ∈ Rm
+ , where (ai)i∈N is chosen so that ψ1(a1) = ψ2(a2) = · · · =

ψn(an).

A ϕ-index egalitarian rule allocates social endowment W into a ϕ-index

egalitarian allocation (a1i, · · · , ami)i∈N so that
∑

t∈M,i∈N ati = W . Note that

for each given ϕ ∈ Φ, Eϕ is well-defined: the existence of Eϕ is implied by

monotonicity and continuity of ψi for each i ∈ N , and uniqueness can be

easily shown.4

Theorem 1. Given a domain E∗, a rule satisfies no-domination and agree-

ment if and only if it is index-egalitarian.

The proof is provided in the appendix.

Theorem 2. Given a domain E∗, a rule satisfies no-reversal, disability

monotonicity, and agreement if and only if it is index-egalitarian.

4Suppose conversely that for some e = (γ, y,W ) ∈ E there exist a = (ai){i∈N}, a
′ =

(a′i){i∈N} ∈ Rmn
+ such that a 6= a′ and a, a′ ∈ Eϕ(e). Then, there exists i ∈ N such that

for some t ∈ M , either ati > a′ti or ati < a′ti. Without loss of generality, assume that
a′1i > a1i. By sector monotonicity of γ, a′ti > ati for all t ∈M , which implies that a′i > ai
and therefore ψi(a

′
i) > ψi(ai). Since both a′ and a are ϕ-value equalizers, ψj(a

′
j) < ψj(aj)

for all j ∈ N , and therefore
∑

t∈M,j∈N (a′tj) >
∑

t∈M,j∈N (atj), which contradicts the fact
that

∑
j∈N,t∈M (a′tj) >

∑
j∈N,t∈M (atj) = W .
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Proof. The “only-if” part follows from Theorem ?? and Proposition ??. It

suffices to prove that all index-egalitarian rules satisfy disability monotonic-

ity. Let F = Eϕ for some ϕ ∈ Φ, e = (γ, y,W ) ∈ E , i ∈ N , y′i ∈ Y be such

that y′i ≤ yi and e′ = (γ, y′,W ) with y′ ≡ (y′i, y−i). Then there exist λ, λ′ ≥ 0

such that for all j ∈ N , ϕ(Fj(e), yj(Fj(e))) = λ and ϕ(Fj(e
′), y′j(Fj(e

′))) = λ′.

First, suppose that λ′ > λ. Then for all j ∈ N\{i}, ϕ(Fj(e), yj(Fj(e))) <

ϕ(Fj(e
′), y′j(Fj(e

′))), which implies that Fj(e) < Fj(e
′). In the case of i,

ϕ(Fi(e), yi(Fi(e))) < ϕ(Fi(e
′), y′i(Fi(e

′))) ≤ ϕ(Fi(e
′), yi(Fi(e

′))), which im-

plies that Fi(e) < Fi(e
′). Altogether, W =

∑
j∈N Fj(e) <

∑
j∈N Fj(e

′) =

W , which is a contradiction. Therefore, λ′ ≤ λ. Then for all j 6= i,

ϕ(Fj(e), yj(Fj(e))) ≥ ϕ(Fj(e
′), yj(Fj(e

′))), which implies that Fj(e) ≥ Fj(e
′).

And by resource constraint, Fi(e) ≤ Fi(e
′), as required by disability mono-

tonicity.

4.2 Resource-index egalitarianism and output-index egal-
itarianism

We define two refinements of the family of index. Let G be the class of all

functions g : Rm
++ ∪ {(0, 0, · · · , 0)} → R+, continuous on its domain and

nondecreasing, satisfying f(0, · · · , 0) = 0 and the monotonicity property5.

For any a, b ∈ Rm
++∪{(0, 0, · · · , 0)}, we call that an index ϕ ∈ Φ is a resource-

index if ϕ(a, b) = g(a) for some g ∈ G, and an output-index if ϕ(a, b) = g(b)

for some g ∈ G. Let ΦR be the class of all resource-index and ΦO be the

class of all output-index. A rule F is resource-index-egalitarian if it is

a ϕ-index egalitarian rule for any ϕ ∈ ΦR, and a rule F is output-index-

5For any x, x′ ∈ Rm
+ , y(x′) ≥ y(x) if x′ ≥ x and y(x′) ≥ y(x) if x′ ≥ x.
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egalitarian if it is a ϕ-index egalitarian rule for any ϕ ∈ ΦO.

We say that a rule F is resource-egalitarian if for each e = (γ, y,W ) ∈

E , F1(e) = · · · = Fn(e). Notice that, according to the definition, Si(e) = W
n

for all i ∈ N . These rules award all agents the same amount of resources

in each sector, but does not restrict each sector distribution. One extreme

example of resource-egalitarian rule can be sector-t resource-egalitarianism:

For some t ∈M and all i ∈ N , Fti(e) = W
n

and Fsi(e) = 0 for all s ∈M\{t}.

Another extreme one would be resource-sector-egalitarianism: For all i ∈ and

t ∈ M , Fti(e) = W
mn

. One problem of resource-egalitarianism is that not all

economies are applicable: the society does not have the full control on each

agent’s division rule. Thus, we need a refinement on the family of economies

when we consider resource-egalitarianism. Define a class of economies:

ERE = {(γ, y,W ) ∈ E : γi = γj∀i, j ∈ N}.

Due to the multi-commodity assumption, there are several ways to de-

fine output-egalitarianism. It can require full equality of all yti(Fti(e))’s,

or equality of yi(Fi(e))’s. We take the second way, the loose requirement:

a rule F is output-egalitarian if for all e = (γ, y,W ) ∈ E , y1(F1(e)) =

· · · = yn(Fn(e)). This rule allocates resources in such a way that outputs are

equalized across agents. Unfortunately, according to this definition, output-

egalitarian rule is not valid for all the economies. For instance, consider an

economy where agent i always distributes almost all her resource to the first

sector with y1i is relatively steeper than other yti’s, while agent j always

distributes almost all her resouce to the second sector and y2j is relatively

steeper than other ytj’s. Then it is impossible to equalize yi(Fi(e)) and

yj(Fj(e)) since the allocation rule can control Si(e)’s only. In other words,
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we need a refinement on the family of economies when we consider output-

egalitarianism. Define a class of economies:

EOE = {(γ, y,W ) ∈ E : ∀i, j ∈ N,Si ∈ R+,∃Sj ∈ R+ s.t. yj(γj(Sj)) = yi(γi(Si))}.

We introduce additional axioms for the sake of the axiomitization of the

output-egalitarianism.

We call a transformation by a continuous and strictly increasing mapping

zt : R+ → R+ with zt(0) = 0. Let Z be the set of all transformations. We

call Zm the set of transformation profiles. For any transformation profile

z = (zt)t∈M ∈ Z and any division function profile γ = (γti)t∈M,i∈N ∈ Γn, we

denote z◦γi = (zt◦γti)t∈M a transformed division function for each agent i and

z ◦ γS = (z ◦ γi)i∈S for each S ⊆ N . Similarly, for any transformation profile

z = (zt)t∈M ∈ Z and any productivity function profile y = (yti)t∈M,i∈N ∈

Ymn, we denote yi ◦ z−1 = (yti ◦ z−1
t )t∈M a transformed productivity function

for each agent i and yS ◦ z−1 = (yi ◦ z−1)i∈S for each S ⊆ N . Notice that

z ◦ γ ∈ Γn and y ◦ z−1 ∈ Ymn.

Ordinality requires solutions to be invariant under any continuous and

non-decreasing transformation of problems. It is a strengthening of scale

invariance (formally defined in Moulin (2000), or Thomson (2003), for in-

stance), which requires invariance under any linear transformation. Ordinal-

ity requires that if the total amount of resource is also transformed so that

the original allocation (in terms of capacity) can be covered exactly, then we

should stick to the original allocation. Therefore, ordinality is an invariance

requirement which aims at cancelling the re-distributive effect of common

‘unit’ shocks unrelated to the underlying demands.
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Ordinality. For all (γ, y,W ) ∈ E and z ∈ Zm,

F (γ, y,W ) = z(F (z ◦ γ, y ◦ z−1,
∑

t∈M,i∈N

zt(Fti(γ, y,W )))).

Resource-Ordinality requires that if everyone’s productivity profile is trans-

formed consistently, then the allocation should be the same as before.

Resource-Ordinality. For all (γ, y,W ) ∈ E and z ∈ Zm,

F (γ, y,W ) = F (γ, z ◦ y,W ).

Fixed point irrelevance says that a distribution (Fi(e), yi(Fi(e)))i∈N as

resource-output pairs of all the agents yielded by an allocation rule F from

an economy e is achievable at a different economy e′, then the allocation rule

F should yield a same allocation in e′.

Fixed Point Irrelevance. For all e = (γ, y,W ), (γ′, y′,W ) ∈ E such that

γ′(S(e)) = γ(S(e)) and y′(γ′(S(e))) = y(γ(S(e))), F (e′) = F (e).

Proposition 3. If a rule satisfies agreement and no-domination, then it

satisfies fixed point irrelevance.

Proof. Let any allocation rule F that satisfies agreement and no-domination.

Then F is a ϕ-index egalitarian rule for some ϕ ∈ Φ. Let any e = (γ, y,W ), e′ =

(γ′, y′,W ) ∈ E such that γ′(S(e)) = γ(S(e)) and y′(γ′(S(e))) = y(γ(S(e))).

We need to show that F (e′) = F (e). Let λ = ϕ(Fi(e), yi(Fi(e))) = ϕ(Fj(e), yj(Fj(e)))

be the equalized index value in economy e. Notice that ϕ(Fi(e
′), y′i(Fi(e

′))) =

ϕ(Fj(e
′), y′j(Fj(e

′))) since F is ϕ-index egalitarian. Suppose conversely that
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F (e′) 6= F (e). Note that S(e′) = S(e) implies F (e′) = F (e) from γ′(S(e)) =

γ(S(e)). Therefore S(e′) 6= S(e), which implies that there exist i, j ∈ N

such that Si(e
′) > Si(e) and Sj(e

′) < Sj(e) from the fact that
∑

k∈N Sk(e′) =∑
k∈N Sk(e). Then Fi(e

′) = γ′(Si(e
′)) > γ′(Si(e)) = Fi(e) and Fj(e

′) =

γ′(Sj(e
′)) < γ′(Sj(e)) = Fj(e) by sector monotonicity. y′i(Fi(e)) = yi(Fi(e)))

implies (Fi(e
′), y′i(Fi(e

′)) > (Fi(e), yi(Fi(e))), which in turn implies ϕ(Fi(e
′), y′i(Fi(e

′))) >

λ, while y′j(Fi(e)) = yj(Fj(e)) implies (Fi(e
′), y′i(Fi(e

′)) < (Fi(e), yi(Fi(e)),

which in turn implies ϕ(Fi(e
′), y′i(Fi(e

′))) < λ. That is, ϕ(Fi(e
′), y′i(Fi(e

′))) >

ϕ(Fi(e
′), y′i(Fi(e

′))), which contradicts the fact that F is ϕ-index egalitarian.

Theorem 3. A rule satisfies no-domination, agreement, and ordinality if

and only if it is output-index-egalitarian.

Proof. Let any output-index-egalitarian rule F . Let ϕ ∈ ΦO be the index

F equalizes. Then there exists g ∈ G such that ϕ(a, b) = g(b) for each

a, b ∈ Rm
+ . We first show that F satisfies all three axioms. Since it is index-

egalitarian, it satisfies no-domination and agreement by Theorem ??. Let

any z ∈ Zm, e = (γ, y,W ) ∈ E , and ez = (z ◦ γ, y ◦ z−1,
∑

t∈M,i∈N zt(Fti(e))).

Let x = F (e) ∈ Rmn
+ . Since F equalizes the ϕ-value, for each i, j ∈ N ,

ϕ(xi, yi(xi)) = ϕ(xj, yj(xj)), that is, g(yi(xi)) = g(yj(xj)). From the fact

that ϕ(z(xk), y ◦ z−1(z(xk))) = g(yk(xk)) for each k ∈ N , z(x) equalizes the

ϕ-value in ez. Since the rule Eϕ is uniquely defined, F (ez) = z(F (e)), which

indicates that F satisfies ordinality.

Let any F that satisfies no-domination, agreement, and ordinality. We

show that F is output-index-egalitarian. By Theorem ??, F = Eϕ for

some ϕ ∈ Φ. Let any z ∈ Zm, e = (γ, y,W ) ∈ E , and ez = (z ◦ γ, y ◦
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z−1,
∑

t∈M,i∈N zt(Fti(e)))). By ordinality, F (ez) = z(F (e)), that is, for each

i ∈ N , ϕ(F (e), y(F (e))) = ϕ(z(F (e)), y(z−1(z(F (e))))) = ϕ(z(F (e)), y(F (e))).

Since z ∈ Z is arbitrary, ϕ ∈ ΦO, that is, F is output-index-egalitarian.6

Corollary 1. Given a domain EOE, a rule satisfies no-domination, agree-

ment, and ordinality if and only if it is output-egalitarian.

Proof. It is trivial that any output-egalitarian rule satisfies no-domination,

agreement, and ordinality. Let a rule F satisfy no-domination, agreement,

and ordinality. We show that F is output-egalitarian. By Theorem ??,

F = Eϕ for some ϕ ∈ ΦO.

Let any e ∈ EOE and any i, j ∈ N . To prove that F is output-egalitarian,

it suffices to show that yi(Fi(e)) = yj(Fj(e)). Notice that since ϕ ∈ ΦO and

γi, γj, yi, yj are strictly increasing, either yi(Fi(e)) = yj(Fj(e)), yi(Fi(e)) >

yj(Fj(e)), or yi(Fi(e)) < yj(Fj(e)). Then, by the monotonicity property of ϕ,

ϕ(Fi(e), yi(Fi(e))) = ϕ(Fj(e), yj(Fj(e))) if and only if yi(Fi(e)) = yj(Fj(e)).

Theorem 4. A rule satisfies no-domination, agreement, and resource-ordinality

if and only if it is resource-index-egalitarian.

Proof. Let any resource-index-egalitarian rule F . Let ϕ ∈ ΦR be the index

F equalizes. Then there exists g ∈ G such that ϕ(a, b) = g(a) for each

a, b ∈ Rm
+ . We first show that F satisfies all three axioms. Since it is index-

egalitarian, it satisfies no-domination and agreement by Theorem ??. Let

6To be specific, if, supposed conversely, ϕ ∈ Φ\{ΦO}, then there exist a, a′, b ∈
Rm

+ such that a 6= a′ and ϕ(a, b) 6= ϕ(a′, b). Then, for any z ∈ Zm that
z(a) = a′, any e = (γ, y,W ) that (Fi(e), yi(Fi(e))) = (a, b) for some i ∈ N , and
ez = (z ◦ γ, y ◦ z−1,

∑
t∈M,i∈N zt(Fti(e)))), ϕ(Fi(e), yi(Fi(e))) = ϕ(a, b) 6= ϕ(a′, b) =

ϕ(z(Fi(e)), yi(Fi(e))), which implies Fi(e
z) 6= z(Fi(e)), that is, F violates ordinality.
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any z ∈ Zm, e = (γ, y,W ) ∈ E , and ez = (γ, z ◦ y,W ). Since F equalizes the

ϕ-value, for each i, j ∈ N , ϕ(Fi(e), yi(Fi(e))) = ϕ(Fj(e), yj(Fj(e))), that is,

g(Fi(e)) = g(Fj(e)). From the fact that ϕ(Fk(ez), yk(Fk(ez))) = g(Fk(ez)) for

each k ∈ N , F (e) equalizes the ϕ-value in ez. Since the rule Eϕ is uniquely

defined, F (ez) = F (e), which indicates that F satisfies resource-ordinality.

Let any F that satisfies no-domination, agreement, and resource-ordinality.

We show that F is resource-index-egalitarian. By Theorem ??, F = Eϕ for

some ϕ ∈ Φ. Let any z ∈ Zm, e = (γ, y,W ) ∈ E , and ez = (γ, z ◦ y,W ). By

resource-ordinality, F (ez) = F (e), that is, for each i ∈ N , ϕ(F (e), y(F (e))) =

ϕ(F (e), z(y(F (e)))). Since z ∈ Z is arbitrary, ϕ ∈ ΦR, that is, F is resource-

index-egalitarian.

Corollary 2. Given a domain ERE, a rule satisfies no-domination, agree-

ment, and resource-ordinality if and only if it is resource-egalitarian.

Proof. It is trivial that any resource-egalitarian rule satisfies no-domination,

agreement, and resource-ordinality. Let a rule F satisfy no-domination,

agreement, and resource-ordinality. We show that F is resource-egalitarian.

By Theorem ??, F = Eϕ for some ϕ ∈ ΦR.

Let any e ∈ ERE and any i, j ∈ N . Then γi = γj. To prove that F is

resource-egalitarian, it suffices to show that Fi(e) = Fj(e). Since ϕ ∈ ΦR,

ϕ(Fi(e), yi(Fi(e))) = ϕ(γi(Si(e)), yi(γi(Si(e)))) = ϕ(γj(Sj(e)), yj(γj(Sj(e)))) =

ϕ(Fj(e), yj(Fj(e))) if and only if Si(e) = Sj(e), that is, Fi(e) = Fj(e).
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4.3 Nash bargaining index - preliminary!

We define a refinement of the family of output-index. We call an output-index

is comprehensive-output-index if it strictly increases in each sector output.

That is, ΦCO = {ϕ ∈ ΦO : ∃g ∈ G s.t. ∀a, b ∈ Rm ∪ {(0, 0, · · · , 0)} ϕ(a, b) =

g(b) and gt strictly increasing in each t ∈M}. A rule F is comprehensive-

output-index-egalitarian if it is a ϕ-index egalitarian rule for any ϕ ∈

ΦCO.

Sector Disability Monotonicity. For all e = (γ, y,W ) ∈ E , all t ∈M, i ∈

N , and all y′ti ∈ Y , if y′ti ≤ yti then Fi(γ, (y
′
i, y−i),W ) ≥ Fi(γ, y,W ), and if

y′ti < yti then Fi(γ, (y
′
i, y−i),W ) > Fi(γ, y,W ).

Corollary 3. A rule satisfies no-domination, agreement, ordinality, and sec-

tor disability monotonicity if and only if it is comprehensive-output-index-

egalitarian.

Proof. Omit.

One example of a noteworthy comprehensive-output-index is Nash-bargaining-

index : ϕNB(a, b) = Πt∈Mbt.

(Need to introduce a regarding axiom and a characterization result of

Nash-bargaining-index egalitarianism here.)
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5 Appendix

5.1 Proof of Theorem ??

Proof. Fix γ̃ = (γ̃i){i∈N} ∈ Γ and ỹ = (ỹi){i∈N} ∈ Ym. Given a rule F

and α ∈ R+, let E(α) be the set of economies where there exists an agent

with (γ̃, ỹ), that is, E(α) = {e ∈ E : there exists i ∈ N such that (γi, yi) =

(γ̃, ỹ) and Si(e) = α}. Notice that for any e = (γ, y,W ) ∈ E(α), any j ∈ N

with (γj, yj) = (γ̃, ỹ) receives α by equal treatment of equals, implied by

no-domination.

Lemma 1. If F satisfies no-domination and resource continuity, then for

all y ∈ Ymn, all N ′ ⊂ N , and all α ∈ R+, there exists W ∗ ∈ R+ such that∑
i∈M Si(γ, y,W

∗) = α.

Proof. Let any y ∈ Ymn, N ′ ⊂ N , and α ≥ 0. Let WL ≥ 0 be such that

WL < α. Since
∑

i∈N(Si(γ, y,WL)) = WL and for all i ∈ N Si(γ, y,WL) ≥ 0,∑
i∈N ′ Si(γ, y,WL) < α.

We next show that there is WH ≥ 0 such that
∑

i∈N ′ Si(γ, y,WH) > α.

Consider a sequence (W n : n ∈ N) such that limn→∞W
n = ∞. Since∑

i∈N Si(γ, y,W
n) = W n for all n, there exists j ∈ N such that (Sj(γ, y,W

n) :

n ∈ N) is an unbounded sequence, which implies, from sector unboundedness,

that (Ftj(γ, y,W
n) : n ∈ N) is unbounded for each t ∈ M . Then, for each

t ∈ M , (ytj(F1j(γ, y,W
n)) : n ∈ N) is also an unbounded sequence since

ytj(·) is an unbounded function.

We show that there is n̄ such that
∑

i∈N ′ Si(γ, y,W
n̄) > α. Suppose by

contradiction that
∑

i∈N ′ Si(γ, y,W
n) ≤ α for all n ∈ N. Since (Ftj(γ, y,W

n) :

n ∈ N) and (ytj(Ftj(γ, y,W
n)) : n ∈ N) are unbounded for each t, there
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exists n such that α < Ftj(γ, y,W
n) for all t, and (y1i(α), · · · , ymi(α)) <

(y1j(F1j(γ, y,W
n)), · · · , ymj(Fmj(γ, y,W

n))) for all i ∈ N ′. Hence for such n,

for all t ∈M, i ∈ N ′, Fti(γ, y,W
n) ≤ α < Ftj(γ, y,W

n) and yti(Fti(γ, y,W
n)) ≤

yti(α) < ytj(Ftj(γ, y,W
n)), which contradicts no-domination.

Now letWH ≡ W n̄. Then
∑

i∈N ′ Si(γ, y,WH) > α. Since
∑

i∈N ′ Si(γ, y,WL) <

α <
∑

i∈N ′ Si(γ, y,WH), by resource continuity, there exists W ∗ ∈ R+ such

that
∑

i∈N ′ Si(γ, y,W
∗) = α.

Lemma 2. Assume that F satisfies no-domination and agreement. For all

e ≡ (γ, y,W ) and all three distinct i, j, k ∈ N , there is e′ ≡ (γ′, y′,W ′)

such that (γ′i, y
′
i) = (γi, yi), (γ′j, y

′
j) = (γ′k, y

′
k) = (γj, yj), Fi(e

′) = Fi(e), and

Fj(e
′) = Fk(e′) = Fj(e).

Proof. Let e = (γ, y,W ) and i, j, k are distinct. Let y′ be such that y′i = yi,

y′j = y′k = yj. By Lemma ??, there is W ′ such that Si(e
′) + Sj(e

′) =

Si(e)+Sj(e), where e′ ≡ (γ′, y′,W ′). By separability (implied by agreement),

Fi(e
′) = Fi(e) and Fj(e

′) = Fj(e). Since (γ′j, y
′
j) = (γ′k, y

′
k) and by equal

treatment of equals (implied by no-domination), Fk(e′) = Fj(e
′) = Fj(e).

Lemma 3. If F satisfies no-domination and agreement, then for any α ∈ R+

and any e, e′ ∈ E(α), there is no pair i, j ∈ N such that (Fi(e), yi(Fi(e))) ≤

(Fj(e
′), yj(Fj(e

′))) and (Fti(e), yti(Fti(e))) < (Ftj(e
′), ytj(Ftj(e

′))) for some

t ∈M .

Proof. Suppose conversely that, without loss of generality, there exist α ≥

0, i, j ∈ N , and e = (γ, y,W ), e′ = (γ′, y′,W ′) ∈ E(α) such that (Fi(e), yi(Fi(e))) ≤
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(Fj(e
′), yj(Fj(e

′))) and (F1i(e), y1i(F1i(e))) < (F1j(e
′), y1j(F1j(e

′))). By Lemma ??,

we may let (γ1, y1) = (γ′1, y
′
1) = (γ̃, ỹ) and assume that 1, i, j are three distinct

agents. Note that S1(e) = S1(e′) = α and F1(e) = F1(e′) = γ̃(α). Let γ̂ and

ŷ be such that (γ̂{1,i,j}, ŷ{1,i,j}) = (γ′{1,i,j}, y
′
{1,i,j}) and (γ̂N\{1,i,j}, ŷN\{1,i,j}) =

(γN\{1,i,j}, yN\{1,i,j}). By Lemma ??, there is Ŵ such that ê ≡ (γ̂, ŷ, Ŵ ) and

S1(ê) + Si(ê) + Sj(ê) = S1(e′) + Si(e
′) + Sj(e

′). By separability (implied by

agreement), F{1,i,j}(ê) = F{1,i,j}(e
′).

Let γ′′ and y′′ such that (γ′′i , y
′′
i ) = (γi, yi), (γ′′j , y

′′
j ) = (γ′j, y

′
j), (γ′′1 , y

′′
1) =

(γ̃, ỹ), and for all h 6= 1, i, j, (γ′′h, y
′′
h) = (γh, yh). By Lemma ??, there is

W ′′ ≥ 0 such that e′′ ≡ (γ′′, y′′,W ′′) and

S1(e′′) + Si(e
′′) + Sj(e

′′) = α + Si(e) + Sj(e
′). (1)

Suppose S1(e′′) > α. By applying agreement to e and e′′, we get Si(e
′′) >

Si(e). Likewise, by applying agreement to ê and e′′, we get Sj(e
′′) > Sj(e

′).

Altogether, S1(e′′) + Si(e
′′) + Sj(e

′′) > α+ Si(e) + Sj(e
′), contradicting (??).

Therefore S1(e′′) ≤ α. Similarly, we can show S1(e′′) ≥ α. Hence S1(e′′) = α.

Then, by applying separability to e′′, Fi(e
′′) = Fi(e) and Fj(e

′′) = Fj(e
′).

That is, (Fi(e
′′), y′′i (Fi(e

′′))) = (Fi(e), yi(Fi(e))), (Fj(e
′′), y′′j (Fj(e

′′))) = (Fj(e
′), y′j(Fj(e

′))).

That, however, implies (Fi(e
′′), yi(Fi(e

′′))) ≤ (Fj(e
′′), yj(Fj(e

′′))) and (F1i(e
′′), y1i(F1i(e

′′))) <

(F1j(e
′′), y1j(F1j(e

′′))), which violates no-domination at e′′.

Let C(α) be the set of all resource-output pairs for all sectors in all

economies in E(α), that is, C(α) = {c ∈ R2m
+ : there exists e ∈ E(α) such that c =

(Fi(e), yi(Fi(e))) for some i ∈ N}.

Also, for each t ∈M , let

ΓYt : {((γ′t(·), γ̃−t), (y′t, ỹ−t)) : R+ → Γ× Ym : ∃(γ, y) ∈ Γn × Ymn and i, j ∈
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N such that (γi, yi) = (γ̃, ỹ) and Fti(((γ
′
t(W ), γ̃−t), γ−j), ((y

′
t, ỹ−t), y−j),W ) =

Ftj(((γ
′
t(W ), γ̃−t), γ−j), ((y

′
t, ỹ−t), y−j),W ) for each W ∈ R+}.

Moreover, for each t ∈ M , let Ct(α) be the set of all sector-t resource-

output pairs of all agents j ∈ N with (γj, yj) corresponds to ΓYt in all

economies in E(α), that is,

Ct(α) = {(a, b) ∈ R2
+ : ∃e = (γ, y,W ) ∈ E(α) and j ∈ N such that (γj, yj) =

((γ′t(W ), γ̃−t), (y
′
t, ỹ−t)) for some ((γ′t(W ), γ̃−t), (y

′
t, ỹ−t)) ∈ ΓYt and (Ftj(e), ytj(Ftj(e))) =

(a, b)}.

We show that for all α ≥ 0 and each t ∈M , Ct(α) is downward sloping.

Lemma 4. If F satisfies no-domination and agreement, then for any α ≥ 0

and t ∈ M , Ct(α) is downward sloping, that is, for all (a, b), (a′, b′) ∈ Ct(α)

with a′ > a, we have b′ ≤ b.

Proof. Assume that F satisfies no-domination and agreement. To prove

that Ct(α) is downward sloping, suppose to the contrary that for some

(a, b), (a′, b′) ∈ Ct(α), (a′, b′) > (a, b). By definition of Ct(α), there ex-

ist e = (γ, y,W ), e′ = (γ′, y′,W ′) ∈ E(α) such that for some i, j ∈ N ,

(Fi(e), yi(Fi(e))) = (a, γ̃−t(α), b, ỹ−t(γ̃−t(α))) and (Fj(e
′), yj(Fj(e

′))) = (a′, γ̃−t(α), b′, ỹ−t(γ̃−t(α))).

That is, (Fti(e), yti(Fti(e))) < (Ftj(e
′), ytj(F1j(e

′))) and (Fsi(e), ysi(Fsi(e))) =

(Fsj(e
′), ysj(Fsj(e

′))) for all s ∈M\{t}, which contradicts Lemma ??.

The next lemma, which says that Ct(α) and Ct(α
′) for each t ∈ M and

α 6= α′ does not intersect, can be established from the above lemmas as in

Chun, Jang, and Ju (2014).

Lemma 5. For each t ∈ M , {Ct(α) : α ∈ R+} is a collection of disjoint

sets.
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The next lemma says that, for each t ∈ M , by varying α ∈ R+, Ct(α)’s

can cover the positive quadrant.

Lemma 6. For all (a, b) ∈ R2
++ ∪ {(0, 0)} and for each t ∈ M , there is a

unique α ≥ 0 such that (a, b) ∈ Ct(α).

Proof. Fix any s ∈ M . Also let any (a, b) ∈ R2
++ ∪ {(0, 0)}. Let B be such

that b = B · ỹs(γ̃s(a)). Without loss of generality, consider that B ≥ 1.7 Let

any (γ, y) ∈ Γn×Ymn such that (γi, yi) = (γ̃, ỹ) and (γj, yj) = (γ̃, (Bỹs, ỹ−s))

for some i, j ∈ N . Notice that ysj(a) = b. Also, for each A > 0, let

eA ≡ (γA, y,W ) ≡ ((A · γ̃s, γ̃−s), γ−j), y,W ) ∈ E . We first show the following

Claim.

Claim 1. If A > 1 then Ftj(e
A) ≤ Fti(e

A) for any t ∈M\{s}.

Proof. Consider any A > 1 and suppose conversely that there exists some

r ∈ M\{s} such that Frj(e
A) > Fri(e

A). Then Ftj(e
A) > Fti(e

A) for all t ∈

M\{s} since γAtj = γAti for all t ∈ M\{s}. Moreover, since A > 1,
Fsj(e

A)

Frj(eA)
>

Fsi(e
A)

Fri(eA)
, which implies Fsj(e

A) > Fsi(e
A). That is, Fj(e

A) > Fi(e
A). Since

yj = (Bỹs, ỹ−s) ≥ ỹ = yi, (Fj(e
A), yj(Fj(e

A))) > (Fi(e
A), yi(Fi(e

A))), which

indicates that no domination is violated.

Let w∗ ∈ R+ be such that Bỹs(w
∗) = ysi(Fsi(e

A)), w be such that

w − w∗ =
∑

t∈M\{s} Fti(e
A), and let C = sup{c ∈ R : cγ̃s(w) = w∗} > 0.

That is, if j’s division function is (C ·γ̃s, γ̃−s), then it divides an individual re-

source w into (w1, · · · , wm) = (w∗, γ̃−s(w)) so that (y1j(w1), · · · , y2j(wm)) =

(Bỹs(w
∗), ỹ−s(γ̃−s(w))) = (y1i(F1i(e

A)), · · · , ymi(Fmi(e
A))). Notice that C ≤

7The proof considering B < 1 is analogous.

21



1 since Bỹs ≥ ysi and Bỹs(w
∗) = ysi(Fsi(e

A)) so that w∗ ≤ Fsi(e
A) = γ̃s(w).

We show the following Claim.

Claim 2. If A ∈ (0, C), then Ftj(e
A) ≥ Fti(e

A) for any t ∈M\{s}.

Proof. Let any A ∈ (0, C) and suppose conversely that there exists some

r ∈ M\{s} such that Frj(e
A) < Fri(e

A). Then γAtj = γAti for all t ∈ M\{s}

implies Ftj(e
A) < Fti(e

A) for all t ∈ M\{s}, and, in turn, ytj = yti im-

plies ytj(Ftj(e
A)) < yti(Fti(e

A)) for all t ∈ M\{s}. Moreover, Fsj(e
A) <

Fsi(e
A) since A < 1, and ysj(Fsj(e

A)) ≤ Bỹ(Aγ̃s(w
∗)) < ysi(Fsi(e

A)) by

the construction of C and from A < C. Therefore Fj(e
A) < Fi(e

A) and

yj(Fj(e
A)) < yi(Fi(e

A)). That is, (Fj(e
A), yj(Fj(e

A))) < (Fi(e
A), yi(Fi(e

A))),

which contradicts no domination.

From Claim 1 and 2 and by division function invariance, for each W ∈ R+,

there existsA∗(W ) such that Ftj(((A
∗(W )·γ̃s, γ̃−s), γ−j), y,W ) = Fti(((A

∗(W )·

γ̃s, γ̃−s), γ−j), y,W ) for all t ∈M\{s}. Finally, as we denote γ∗(·) ≡ (A∗(·)γ̃s, γ̃−s),

γ∗(W ) ∈ Γ for each W ∈ R+ is implied by F ’s sector unboundedness and re-

source monotonicity. Thus ((γ∗(·), yj) ∈ ΓYs. Let e∗ = ((γ∗(W ), γ−j), y,W ).

By Lemma ?? and from ysj(a) = b, there existsW ∈ R+ such that (Fsj(e
∗), ysj(Fsj(e

∗) =

(a, b), which implies that (a, b) ∈ Cs(α) by letting α = Si(e
∗).

Finally, the uniqueness of α is implied by Lemma ??.

The next lemma says that for each t ∈ M , if α1 > α2, then Ct(α1) lies

above Ct(α2), which can be shown using Lemma ??, ??, and ?? as in Chun,

Jang, and Ju (2014).

Lemma 7. For each t ∈M , if α1 > α2, then
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(i) for all (a, b) ∈ Ct(α2) there exists (a′, b′) ∈ Ct(α1) such that (a, b) <

(a′, b′), and

(ii) there is no (a′′, b′′) ∈ Ct(α2) and (a, b) ∈ Ct(α1) such that (a′′, b′′) >

(a, b).

Now we define the following set:

D2(α) = {(α1, α2) ∈ R2
+ : ∃e = (γ, y,W ) ∈ E(α) and j ∈ N such that

(Ftj(e), ytj(Ftj(e))) ∈ Ct(αt) for each t = 1, 2 and (γt′j, yt′j) = (γtj, ytj) for all t′ >

t}.

We first show that for each α ∈ R+, D2(α) is downward sloping.

Lemma 8. For any α ∈ R+, D2(α) is downward sloping.

Proof. To prove that D2(α) is downward sloping, suppose, to the contrary,

that for some (α1, α2), (α′1, α
′
2) ∈ D2(α), (α1, α2) < (α′1, α

′
2). By Lemma

??, there exist (ak, bk) ∈ Ck(αk) and (a′k, b
′
k) ∈ Ck(α′k) such that (ak, bk) <

(a′k, b
′
k) for each k ∈ {1, 2}. By definition of D2(α), there exist e, e′ ∈ E(α)

and i, j ∈ N such that (Fi(e), yi(Fi(e))) = (a1, a2, · · · , a2, b1, b2, · · · , b2) and

(Fj(e
′), yj(Fj(e

′))) = (a′1, a
′
2, · · · , a′2, b′1, b′2, · · · , b′2). That is, (Fti(e), yti(Fti(e))) <

(Ftj(e
′), ytj(Ftj(e

′))) for all t ∈M , which contradicts Lemma ??.

Lemma 9. {D2(α) : α ∈ R+} is a collection of disjoint sets.

Proof. Let α′ > α and suppose that (α1, α2) ∈ D2(α) ∩D2(α′). Then there

exists e = (γ, y,W ) ∈ E(α) and i ∈ N\{1} such that (γ1, y1) = (γ̃, ỹ), S1(e) =

α, (F1i(e), y1i(F1i(e))) ∈ C1(α1), and (Fti(e), yti(Fti(e))) ∈ C2(α2) for all

t ∈ M\{1}. By Lemma ??, there is W ′ such that e′ = (γ, y,W ′) and

S1(e′) = α′. Then W ′ > W by resource monotonicity, and therefore Fi(e
′) >

Fi(e), which also implies yi(Fi(e
′)) > yi(Fi(e)). Since (F1i(e

′), y1i(F1i(e
′))) >
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(F1i(e), y1i(F1i(e))), (F2i(e
′), y2i(F2i(e

′))) > (F2i(e), y2i(F2i(e))), and by Lemma

??, there exist α′1 > α1 and α′2 > α2 such that (F1i(e
′), y1i(F1i(e

′))) ∈ C1(α′1)

and (F2i(e
′), y2i(F2i(e

′))) ∈ C2(α′2). Since (α1, α2) ∈ D2(α′) and (α′1, α
′
2) ∈

D2(α′), D2(α′) is not downward sloping, contradicting Lemma ??.

The next lemma says that D2(α) can cover the positive quadrant by

varying α ≥ 0.

Lemma 10. For all (α1, α2) ∈ R2
+, there is a unique α ∈ R+ such that

(α1, α2) ∈ D2(α).

Proof. Let any (α1, α2) ∈ R2
+, (a1, b1) ∈ C1(α1), and (a2, b2) ∈ C2(α2). Let

any (γ, y) ∈ Γn × Ymn such that (γ1, y1) = (γ̃, ỹ), (γ2i, y2i) = · · · = (γmi, ymi)

with γi(a1 + (m − 1) · a2) = (a1, a2, · · · , a2), y1i(a1) = b1, and y2i(a2) =

b2 for some i ∈ N\{1}. By Lemma ??, there exists W such that e =

(γ, y,W ) and Si(e) = a1 + (n− 1) · a2, which implies that (Fi(e), yi(Fi(e))) =

(a1, a2, · · · , a2, b1, b2, · · · , b2). By letting α = S1(e) and from (a1, b1) ∈ C1(α1)

and (a2, b2) ∈ C2(α2), we have (α1, α2) ∈ D2(α). The uniqueness of α is

implied by Lemma ??.

The next lemma says that D2(α1) lies above D2(α2) for any α1 > α2.

Lemma 11. If α′ > α, then for all (α1, α2) ∈ D2(α),

(i) there exists (α′1, α
′
2) ∈ D2(α′) such that (α1, α2) < (α′1, α

′
2), and

(ii) there is no (α′′1, α
′′

2) ∈ D2(α′) such that (α′′1, α
′′

2) < (α1, α2).

Proof. Let any α′ > α and any (α1, α2) ∈ D2(α). We first show (i). There

exists e = (γ, y,W ) ∈ E(α) such that (γ1, y1) = (γ̃, ỹ), S1(e) = α, and

(Fti(e), yti(Fti(e))) ∈ Ct(αt) for t = 1, 2. By Lemma ??, there exists W ′ such
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that e′ = (γ, y,W ′) and F1(e′) = α′. By resource monotonicity, (Fti(e
′), yti(Fti(e

′))) >

(Fti(e), yti(Fti(e))) for t = 1, 2. By Lemma ??, for each t = 1, 2, there ex-

ists a unique α′t > αt such that (Fti(e
′), yti(Fti(e

′))) ∈ Ct(α
′
t). Therefore,

(α′1, α
′
2) ∈ D2(α′).

To show (ii), suppose conversely that there exists (α′′1, α
′′

2) ∈ D2(α′) such

that (α′′1, α
′′

2) < (α1, α2). By (i) and from α′ > α, there exists (β1, β2) ∈

D2(α) such that (α′′1, α
′′

2) > (β1, β2). That is, (α1, α2) > (α′′1, α
′′

2) >

(β1, β2) and (α1, α2), (β1, β2) ∈ D2(α), which contradicts Lemma ??.

Now we define Dt(·) for t > 2. For each t ∈M\{1, 2},

Dt(α) = {(αt−1, αt) ∈ R2
+ : ∃e = (γ, y,W ) ∈ E(α), j ∈ N with (Ftj(e), ytj(Ftj(e))) ∈

Ct(αt) and (γt′j, yt′j) = (γtj, ytj) for all t′ > t such that, (Ft′j(e), yt′j(Ft′j(e))) ∈

Ct′(α
′
t′) for t′ < t and (α′1, α

′
2) ∈ D2(α2), · · · , (αt−2, α

′
t−1) ∈ D(αt−1)}. No-

tice that for such j ∈ N in the definition of Dt(α), (Ftj(e), ytj(Ftj(e))) =

(Ft′j(e), ytj(Ft′j(e))) for all t′ > t.

Following the process of Lemma ??, ??, ??, and ??, we can show the

following lemma.

Lemma 12. For any t ∈ {2, · · · ,m},

(i) Dt(α) is downward sloping for each α ∈ R+.

(ii) {Dt(α) : α ∈ R+} is a collection of disjoint sets.

(iii) For all (α1, α2) ∈ R2
+, there is a unique α ≥ 0 such that (α1, α2) ∈

Dt(α).

(iv) If α′ > α, then for all (α1, α2) ∈ Dt(α),

(iv-i) there exists (α′1, α
′
2) ∈ Dt(α

′) such that (α1, α2) < (α′1, α
′
2), and
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(iv-ii) there is no (α′′1, α
′′

2) ∈ Dt(α
′) such that (α′′1, α

′′
2) < (α1, α2).

Now we are ready to prove Theorem 1.

For each t ∈ {2, · · · ,m}, define δt : R2
+ → R+ by δt(α

′, α′′) = α,

where α ∈ R+ is the unique number for which (α′, α′′) ∈ Dt(α), and define

δ : Rm
+ → R+ by δ(α1, · · · , αm) = δm(δm−1(· · · δ3(δ2(α1, α2), α3), · · · , αm).

Notice that for each (α1, · · · , αm) ∈ Rm
+ , δ(α1, · · · , αm) is uniquely deter-

mined, δ(0, · · · , 0) = 0, and δ(α1, · · · , αm) > 0 if and only if (α1, · · · , αm) ≥ 0

with αt > 0 for some t ∈ M . From the preceding discussion, we can

conclude that δ is continuous, nondecreasing, and for any (α1, · · · , αm) <

(α′1, · · · , α′m), δ(α1, · · · , αm) < δ(α′1, · · · , α′m).

Define ϕ : R2m
++ ∪ {(0, 0, 0, 0)} → R+ by ϕ(a1, · · · , am, b1, · · · , bm) =

δ(α1, · · · , αm), where αt is the unique number for which (at, bt) ∈ Dt(αt)

for each t ∈M . Then it is obvious that ϕ ∈ Φ, according to the property of

δ.

We now show that F (e) = Eϕ(e) for all e = (γ, y,W ) ∈ E . If (γi, yi) =

(γ̃, ỹ) for some i ∈ N , then by letting λ = Si(e), for all j ∈ N , we

have (αtj){t∈M} such that (Ftj(e), ytj(Ftj(e))) ∈ Ct(αtj) for each t ∈ M ,

and ϕ(Fj(e), yj(Fj(e))) = δ(α1j, · · · , αmj) = λ. Since
∑

j∈N Sj(e) = W ,

F (e) = Eϕ(e).

We now consider the case that there is no i ∈ N with (γi, yi) = (γ̃, ỹ).

Consider γ′ = (γ̃, γ2, · · · , γn) and y′ = (ỹ, y2, · · · , yn). By Lemma 1, there

exists W ′ such that e′ = (γ′, y′,W ′) and
∑

i∈N\{1} Si(e
′) =

∑
i∈N\{1} Si(e).

By separability (implied by agreement), for all i ∈ N\{1}, Si(e
′) = Si(e),

and therefore Fi(e
′) = Fi(e). Let λ = S1(e′). Then, for all i ∈ N\{1},

ϕ(Fi(e), yi(Fi(e))) = ϕ(Fi(e
′), yi(Fi(e

′))) = λ. Similarly, we can show that
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ϕ(F1(e), y1(F1(e))) = λ. Therefore, F (e) = Eϕ(e).
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